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MODELING HIGH EXPLOSIVES WITH THE METHOD OF
CELLS AND MORI-TANAKA EFFECTIVE MEDIUM THEORIES

B. E. Clements and E. M. Mas

(T-1) Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract. The Method of Cells (MOC) has been applied to a PBX 9501 composite, consisting of large
explosive grains embedded in a small grain-binder mixture, to determine its thermal-mechanical
properties. To treat the bimodal size distribution of grains, in the framework of the MOC, we assign one
of eight MOC cells to model the effects of large grains and the remaining seven cells to model the small
grain-binder mixture. We have applied a modified Mori-Tanaka effective medium theory to model the
small grain-binder mixture. Spherical as well as randomly oriented ellipsoidal grains can be treated. This
theory allows us to model the individual properties of the constituents: binder viscoelasticity, and grain
elastic-plastic-damage behavior. Interfacial debonding between the grains and binder can be incorporated as
needed. The method’s predictions are compared to uniaxial measurements. [Research supported by the
USDOE under contract W-7405-ENG-36.]

INTRODUCTION

  The microstructure of PBX 9501 is very
complicated because of the irregular size distribution
of the cyclotetramethylene-tetranitramine (HMX)
high explosive crystals in the PBX 9501 composite.
It is tempting to use the powerful Method of Cells1

(MOC) micromechanics to model this material.
Because of the complex microstructure it appears
that a large Representative Volume Element (RVE)
is needed. Unfortunately, large RVE’s become
prohibitively expensive in computation time when
implemented in finite-element simulations. To
circumvent this problem, we propose to develop a
hybrid theory where a small, numerically efficient,
RVE accurately represents the entire PBX 9501
composite. This is done by using a portion of the
RVE cells to represent the large HMX grains, while
the remaining cells will consist of a mixture of
small HMX grains and plasticized estane binder.
This proposal eliminates the need to have RVE cells
model HMX grains ranging from small (10 µm) to
large (200 µm) sizes. The Eshelby-Mori-Tanaka
(EMT) composite theory is used to determine the

stress and strain fields in the mixture RVE cells, as
described by Weng and coworkers2. The EMT theory
includes rate-dependent polymeric materials because
much of the rate dependence observed for PBX 9501
is due to the polymeric binder.
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FIGURE 1. Treatment of the different length scales.



  Figure 1 shows how we treat the various length
scales in this problem. The cubical RVE has cells
for coarse HMX grains and cells with small grain-
binder mixture. The small grain-binder mixture is
treated by EMT theory. Homogenization of the RVE
in MOC theory allows the MOC/EMT theory to be
implemented into large-scale finite element
simulations. In this way we have bridged length
scales from microns to centimeters.

THEORETICAL CONSIDERATIONS

  A detailed discussion of the MOC has been given
by Aboudi1; here we review only the qualitative
details regarding the method. The MOC equations
are derived from the following considerations: (1)
volume averaged stress is continuous across cell
boundaries, (2) volume averaged displacement is
continuous across cell boundaries when interfacial
bonding is perfect, (3) a first-order expansion
suffices for the local particle displacement field, (4)
conditions of mechanical equilibrium apply, (5)
constitutive laws for the constituent materials are
known, and (6) the micro-structure is spatially
periodic (allowing the identification of a RVE).
These conditions are sufficient to solve for the
micro-stresses σij

(α ,β ,γ )  and micro-strains ε ij
(α ,β ,γ ) in

the RVE cells. The macro-stress σij  for the entire

composite system, for example, is determined from
the weighted volume average of σij

(α ,β ,γ )  where

α ,β, γ  labels the cells of the RVE.

  We refer to the binder-HMX composite theory
describing the mixture RVE cells as the  Dirty
Binder (DB) model (Fig. 2). In the DB model each
mixture cell within the MOC scheme is a composite
comprised of randomly spaced filler (f) HMX grains
embedded in a matrix (m) of plasticized estane.  Let
the concentration of the HMX phase be denoted by
c f , and the plasticized estane by cm   = 1 - c f . The

grains are assumed to be randomly positioned in the
matrix, and c f  is taken to be sufficiently small such

that the probability of grain-to-grain contact is
negligible (e.g. c f < 40%).
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FIGURE 2. Dirty Binder Model using EMT Theory

The isotropic plasticized estane binder is viscoelastic
and the  HMX grains are treated as being linear
elastic. The elastic moduli for HMX were taken
from ultrasonic sound speed measurements of J.
Zaug3.  His Voigt upper bound values for the bulk
and shear moduli are 12.51 GPa and 5.43 GPa,
respectively, which are the values used in our
calculations. The bulk modulus of the binder is
taken to be 3.65 GPa. To describe the rate
dependence of the shear relaxation function we
developed a Generalized Maxwell Model (GMM) for
the binder of the form:
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where τ i  is the ith relaxation time and µi
m  is the

strength of the ith mode. The entire DB composite
will respond viscoelastically, obtaining its strain
rate dependence from the plasticized estane matrix.
As with the plasticized estane, we expect that the
Boltzmann Superposition Principle (BSP)4 will
provide an adequate description for the time
dependent stress field, σ ij t( ),  for the entire DB

composite,
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where L tijkl
DB ( )  is the stress relaxation function for the

DB composite and ε̇ ( t )  is the strain rate tensor.
The random position of the HMX grains in the
matrix ensures overall isotropy of the DB
composite. Under these conditions L tijkl

DB ( )  can be

expressed as
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where K tDB ( )  and µ DB t( ) are the DB composite

bulk and shear relaxation functions, respectively.
Our derivation of these two functions begins with
the theory of Weng and coworkers2. These authors
generalized Eshelby-Mori-Tanaka theory to include
linear viscoelastic materials. Here we make no
attempt to summarize the entire theory, rather we
focus only on points central to our work. Each
moduli, in EMT theory, has the form
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where   L  is the Laplace transformation operator.The
HMX and the binder’s bulk response are both
approximated as being rate independent. Identifying
the ratio ˜ /µ DB DBK  as a small quantity allows us to

expand the bracketed quantities in Eq. (4) in a power
series about this ratio. The resulting expansions can
be truncated to any order. This step is important
because it allows us to perform analytic, rather than
numerical, Laplace inversions required by Eq. (4)
The result of our first-order analysis are the simple
expressions
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where µi
m  are the coefficients of the GMM for the

unfilled binder. This analysis has be extended to the
general case of ellipsoidal shaped HMX grains.

COMPARISON WITH EXPERIMENT

  Using our micromechanics theory we could
simulate uniaxial compression experiments in
regimes of low and intermediate strain rates.
Accordingly, we were able to compare our
theoretical stress-strain predictions for PBX 9501 to
quasi-static MTS experiments done by Weigand5 and
Instron measurements of Idar, Peterson, Scott, and
Funk6. At higher rates a similar comparison was
made to Split Hopkinson Pressure Bar (SHPB)
measurements of Blumenthal, Cady and Gray7.

  The DB model described in the last section can be
incorporated into the MOC with relative ease. We
then have seven DB cells and one large pure HMX
cell forming the eight cells in the 2x2x2 RVE.
Larger RVE’s, for example 3x3x3 could be used in
future calculations if the need arises. In the
calculations described below only spherical HMX
grains are used in the DB cells. From our
simulations the optimal percent volume
concentration of the HMX grains in the DB cells
was determined to be about 40%.

  The results are shown in Fig. 3 for various strain
rates and temperatures. The temperature dependence
in our theory comes completely from the
temperature dependence of the binder using a
Williams, Landel and Ferry (WLF) expression4.
Regarding the theory-experiment comparison, three
points need further comment. First, the change in
the slope of the stress-strain curves, at low strains,
comes about completely from the viscoelasticity of
the binder. Second, there is substantial softening
seen in all stress-strain curves beyond strains of
about 1%. In our theory, this particular behavior
was captured by using ISO-SCM crack model8. In
our MOC/EMT hybrid theory only the pure HMX
cell in our RVE was allowed to have micro-crack
growth. Third, in SHPB experiments the initial
portion of the curve is in question because of the
required ring-up time for the sample. Nevertheless,
good agreement between theory and experiment is



generally found. Finally, we also compared our
theoretical predictions to plate impact experiments
of Dick, Martinez, and Hixson9. For this it was
necessary to embed our micromechanics analysis
into the finite-difference hydrocode. Our results were
found to be in good agreement with those reported in
Ref. (9).

CONCLUSIONS

We have applied Mori-Tanaka and Method of Cells
composite theories to model the mechanical
properties of PBX 9501. The method’s predictions
compare well to experimental measurements.
Viscoelasticity of the binder10 and elastic-plastic-
damage properties of the HMX grains must all be
accounted for to properly describe the behavior of
this explosive.
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FIGURE 3. Low strain rate (top two) and high strain rate
(bottom) comparisons between MOC/EMT theory and
experiment.


	MODELING HIGH EXPLOSIVES WITH THE METHOD OF CELLS AND MORI-TANAKA EFFECTIVE MEDIUM THEORIES
	Abstract.
	INTRODUCTION
	THEORETICAL CONSIDERATIONS
	COMPARISON WITH EXPERIMENT
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

